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Abstract The dysbalance between the sympathetic and parasympathetic vegetative system and 
increased free radical burden in the central nervous system (CNS) are the important 
pathophysiological disorders and therapeutic targets in hypertension. Besides the effects 
on cardiovascular system, the pineal hormone, melatonin (N-acetyl-5-methoxytrypta-
mine) may exert part of its antihypertensive action just through its interaction with the 
CNS. Melatonin may be protective in CNS on several different levels: it reduces production 
of reactive oxygen species, improves endothelial dysfunction, reduces inflammation and 
shifts the balance between the sympathetic and parasympathetic system in favor of the 
parasympathetic system. Increased level of serum melatonin observed in some types of 
hypertension may represent a counterregulatory adaptive mechanism against the sympa-
thetic overstimulation. All these effects of melatonin may include increased production of 
nitric oxide in their mechanisms of protection. In different experimental models of hyper-
tension upregulation of nitric oxide synthase (NOS) activity and NOS isoform expression 
in different parts of brain after melatonin treatment have been documented. Thus, it is 
supposed that the correction of absolute or relative melatonin deficiency by exogenous 
melatonin administration in conditions of increased blood pressure, may help to attenu-
ate the excessive catecholamine outflow providing a rational background for therapeutic 
application of melatonin in hypertension treatment. 

Introduction
Primary hypertension is a complex hemodynamic and 
structural disorder and is likely to be the consequence 
of an interaction between environmental and genetic 
factors. Long term high blood pressure is a major risk 
factor for coronary artery disease, stroke, heart failure, 
peripheral vascular disease, vision loss, and chronic 
kidney disease (Hrenak et al 2015; Pechanova & Simko 
2009). Besides peripheral alteration also central ner-
vous system disorders may contribute to the devel-
opment of hypertension. Thus the term neurogenic 
hypertension was suggested, involving the dysbalance 

between sympathetic and parasympathetic compo-
nents on the base of disturbed interplay on the level 
of central and peripheral autonomic nervous system 
(Paton & Waki 2009; Waki 2011). Recently, it has been 
suggested that the inflammation in the brainstem 
may underlie this neurogenic hemodynamic disorder 
(Waki 2011). Pro-inflammatory molecules, e.g. junc-
tional adhesion molecules, are overexpressed in the 
endothelium of the microvasculature in the nucleus 
tractus solitarii, the principal structure controlling 
arterial blood pressure with a subsequent leukocyte 
adherence to inflamed endothelium and inflamma-
tory cytokines release, while this type of inflammatory 
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response seems to be quite specific for the hypertensive 
brainstem (Waki 2008). If the endothelium inflamma-
tion in the variable parts of the central nervous system is 
involved in the pathogenesis of hypertension in a more 
general term, then the substances with potential anti-
inflammatory, antioxidant and endothelium protecting 
action in the CNS, such as melatonin, might become an 
important player in the therapeutic targeting. 

Melatonin is a hormone secreted by the pineal gland 
in the brain and acting as a messenger of the suprachi-
asmatic nucleus and synchronisig the daily rhytms of 
variable physiological functions (Pevet & Challet 2011; 
Reiter et al 2013; Zeman et al 2013). It helps regulate 
other hormones in the body and plays an important role 
in the regulation of several parameters of the cardio-
vascular system including blood pressure (Dominguez-
Rodriguez et al 2012). Thus, it is considered to be a 
putative antihypertensive agent (Paulis et al 2009, 2010; 
Simko et al 2013). However, the mechanisms and path-
ways involved in its blood pressure lowering action are 
complex and not entirely clear. Both effects mediated 
by specific melatonin receptors and direct unspecific 
actions, particularly those involving the antioxidant 
nature of melatonin, are of significant biological value. 

Melatonin and oxidative burden in CNS
Melatonin and its metabolites (Tan et al 2012; Galano et 
al 2013) have extraordinary antioxidant potential and 
reduce the level of free radical burden on the level of 
both oxygen- and nitrogen species (Galano et al 2013; 
Agil et al 2013; Pechanova et al 2007), and their lipophilic 
action enables them to cross the cell membrane and 
extend the protective action to all subcellular structures 
(Venegas et al 2013; Simko et al 2013; Simko & Paulis 
2013). Acting as a direct scavenger, melatonin is able to 
neutralize different free radicals, such as singlet oxygen, 
superoxide anion radical, hydroperoxide, hydroxyl radi-
cal, lipid peroxide radical and highly toxic peroxynitrite 
anion (Rosen et al 2006; Reiter et al 2010). Indirect anti-
oxidant actions of melatonin reside in the improvement 
of mitochondrial efficiency (Acuna-Castroviejo et al 
2001), stimulation of gene expressions and activation of 
superoxide dismutase (SOD), catalase, and glutathione 
peroxidase (Tomas-Zapico et al 2005). Furthermore, the 
ability of melatonin to potentiate the antioxidant action 
of substances with an antioxidant potential, like gluta-
thione, vitamin E and vitamin C, may also contribute 
to the regulation of vascular functions and blood pres-
sure regulation (Reiter et al 2000). Since the attenuation 
of the free radical burden in the CNS was shown to 
attenuate hypertension (Kojsova et al 2006; Rehakova 
et al 2016) the antioxidant nature of melatonin may 
act beneficially particularly in the brain – the tissue 
especially susceptible to the increased oxidative load. 

Angiotensin II represents a key factor enhancing 
ROS production in the central nervous system pre-
dominantly by the activation of nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase. Besides car-
diovascular system, also the CNS suffers seriously from 
the long-term impact of the increased reactive oxygen 
or nitrous species. The brain is remarkably susceptible 
to the oxidative stress because its antioxidant defense 
is rather poor (Pechanova 2010). In the brain, only the 
low catalase activity and moderate levels of the antioxi-
dant enzymes like superoxide dismutase and glutathi-
one peroxidase were detected. The high levels of iron 
and ascorbic acid in the brain participate significantly 
on the catalysis of lipid peroxidation. Additionally, 
neurotransmitters may be autoxidized generating thus 
ROS (Lau et al 2005). Thus, antioxidant, scavenging 
and anti-inflammatory effects of melatonin in CNS 
may additionally contribute to blood pressure reduc-
tion. Melatonin is able to increase the activity and/or 
mRNA of glutathione peroxidase, copper-zinc super-
oxide dismutase, manganese superoxide dismutase 
and reduced glutathione in different brain regions, 
observed during both acute and chronic treatment 
with melatonin (Tomas-Zapico et al 2005; Kotler et al 
1998). Furthermore, melatonin, similarly like different 
polyphenolic compounds, directly affects the assembly 
of NADPH oxidase in microglia, potentially through 
the inhibition of NADPH oxidase phosphorylation via 
a PI3K/Akt-dependent signaling pathway, blockade of 
p47(phox) and p67(phox) subunits translocation to the 
membrane, and down-regulation of p47(phox) binding 
to gp91(phox) (Zhou et al 2008; Kovacsova et al 2010; 
Pechanova et al 200).

Importantly, angiotensin II itself increases melatonin 
synthesis in the pineal gland (Carrera et al 2006), which 
may be considered as the self-defending mechanisms 
restraining the deleterious effects of chronic angioten-
sin II activation including hypertension and pathologic 
remodeling development. 

Melatonin and nitric oxide in CNS
Among the intracellular melatonin targets, Ca2+-
calmodulin complex, which increases endothelial 
and neuronal NOS activity, plays a major role. Nano 
molar concentrations of melatonin interact with the 
Ca2+-calmodulin complex, modifying thus its effects 
in many physiological and pathophysiological condi-
tions (Benitez-King & Anton-Tay 1993). The Ca2+-
calmodulin interactions with melatonin in vascular bed 
result in the modification of intracellular Ca2+ concen-
trations. While in smooth muscle cells, the melatonin 
effect on Ca2+-calmodulin complex may decrease the 
level of Ca2+ and lead to relaxation; in endothelial cells 
the reduced Ca2+ level may inhibit endothelial NOS 
triggering thus vasoconstriction (Pandi-Perumal et al 
2008). Suggestively, the biological effect of melatonin-
Ca2+-calmodulin interplay depends on the type of 
target cell.

The relation of melatonin regarding its effect on 
nitric oxide level is rather complex in the brain tissue. 
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This indolamine and its derivates inhibit nNOS and 
iNOS, while the effect on eNOS is less clear. Melato-
nin inhibits iNOS through NF-κB-dependent signaling 
pathway (Mauriz et al 2013; Parohova et al 2009; Reiter 
et al 2000; Barta et al 2012), and eNOS via modification 
of Ca2+-calmodulin complex (Pozo et al 1997). Neu-
ronal NOS is activated by calcium similarly to eNOS 
and analogic mechanism in melatonin – nNOS interac-
tion in the brain may be supposed. The study of (Koh 
2008), however, documented that melatonin prevented 
decrease of eNOS expression during ischemic brain 
injury. Thus, it is plausible that scavenging and anti-
oxidant effect of melatonin may stabilize eNOS and 
potentially also nNOS isoform. Interestingly, in rats 
with metabolic syndrome melatonin did not affect NOS 
activity and eNOS protein expression in the heart left 
ventricle and aorta, while it increased these parameters 
in the brain cortex and cerebellum (Klimentova et al 
2016; Matuskova et al 2013).

Truth is that central nitric oxide can reduce blood 
pressure via attenuation of sympathetic activity in 
hypertensive rats (Zhou et al 2014; Ramchandra et al 
2014). The question arise which NOS isoform may 
contribute mostly to this blood pressure reduction. 
Although Guo et al (2009) suggested predominant 
role of nNOS in this process, other studies preferred 
increased eNOS expression in both sympathetic activity 
and blood pressure reduction (Kimura et al 2007;Sakai 
et al 2005; Kishi et al 2001). In accordance with the last 
studies, in rats with metabolic syndrome, melatonin 
treatment increased brain eNOS, while had no effect 
on nNOS protein expression. Thus, in rats with meta-
bolic syndrome melatonin may up regulate rather brain 
eNOS with decreasing effect on blood pressure. 

It seems that final melatonin effect on different NOS 
isoforms may vary according to the pathophysiological 
conditions, dose or strain tested (Tain et al 2014). In 
any case, melatonin-nitric oxide pathway interplay on 
the level of CNS may affect BP regulation differentially.

Receptor-dependent effects of 
melatonin in CNS
Specific melatonin receptors were described in the 
cellular membrane systems, cytosol and even nucleus. 
Both MT1 and MT2 melatonin receptors are mem-
brane-bound G protein-coupled receptors (GPCR). 
MT1 are primarily linked with Gαi, and Gαq subunits, 
while MT2 is mainly connected with Gαi (Paulis et al 
2012; Slominski et al 2012). The cytosolic MT3 mela-
tonin receptor is actually the quinone reductase 2A 
having a low-affinity binding site (Nosjean et al 2000). 
The melatonin receptor subtype distribution in periph-
eral arteries can significantly influence the biological 
effect of melatonin in terms of vasorelaxation or vaso-
constriction (Benova et al 2009). However, MT recep-
tors may be involved in BP regulation also through 
the central regulatory mechanisms, since the highest 

density of melatonin receptors has been shown to be 
in central nervous system, particularly in the adenohy-
pophysis (Malpaux et al 2001), SCN (Vanĕcek & Janský 
1989), PVN (Duncan et al 1989) and area postrema 
(Williams et al 1995). 

Recently it has been shown that administration of a 
melatonergic MT1/MT2 agonist – agomelatine signifi-
cantly attenuated two-kidney-one-clip (2K1C)-hyper-
tension induced impairments in memory, endothelial 
function, nitrosative stress, mitochondrial dysfunction, 
inflammation and brain damage. Therefore, modu-
lators of MT1/MT2 receptors may be considered as 
potential agents for the management of renovascular 
hypertension (Singh et al 2015).

Moreover, it has been shown that in stress-induced 
hypertensive rats, melatonin levels in the anterior hypo-
thalamic area were reduced. A microinjection of mela-
tonin into this site reduced blood pressure along with 
increased GABA-ergic activity and reduced glutamate-
ergic activity in the rostral ventrolateral medulla. This 
effect was prevented by MT1/MT2 blockade (Schepel-
mann et al 2011). Interestingly, in the study of Klimen-
tova et al (2016) melatonin along with increased brain 
NOS activity and decreased blood pressure elevated 
MT1 protein expression as well. It was hypothesized, 
that activation of MT receptors on endothelial cells 
would trigger NO production and contribute to blood 
pressure reduction (Barta et al 2012). It seems, how-
ever, that MT receptors may regulate blood pressure 
also through the central mechanisms, since the highest 
density of melatonin receptors has been shown just in 
the central nervous system (Masana et al 2002; Tunstall 
et al 2011).

Melatonin and sympathetic activity
The physiology of melatonin is closely bound with the 
sympathetic nervous system. On one hand the control 
of melatonin release is controlled by sympathetic affer-
entation to the pineal gland, mediating the inhibitory 
effect of light on pineal melatonin secretion (Wurtman 
et al 1964). This pathway starts in the retina influenc-
ing the master biological clock in the suprachiasmatic 
nucleus (SCN) (Moore 1996; Dubocovich et al 1998). 
The SCN then inhibits the paraventricular nucleus 
(PVN) by GABA-ergic innervation (Moore 1996) lead-
ing to interruption of the constant stimulation of the 
sympathetic intermediolateral nucleus by the PVN 
(Kalsbeek et al 2000). This sympathetic pathway includ-
ing interpolation in the superior cervical ganglion 
induces the production of melatonin (Moore 1996) by 
stimulation of pineal β1- and α1-adrenoceptors (Reiter 
1991; Cecon et al 2010). On the other hand, melatonin 
modulates the tone of the autonomic nervous system. 
Pinealectomized rats showed higher catecholamine 
levels upon interleukin-1-beta stimulation, an effect 
which was abolished by intraventricular infusion of 
melatonin (Wang et al 1999). In SHR, acute admin-
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istration of melatonin reduced blood pressure along 
with norepinephrine levels (K-Laflamme et al 1998). 
Acute administration of melatonin to normotensive 
rats reduced blood pressure, heart rate along with the 
reduction of serotonin levels in corpus striatum and 
hypothalamus (Chuang et al 1993). Moreover, in these 
experiments, the effect of melatonin on blood pressure 
and heart rate was abolished by spinal transection or 
bilateral vagotomy, suggesting the involvement of sym-
pathetic inhibition or parasympathetic stimulation by 
melatonin (Chuang et al 1993). Chronic administration 
of melatonin, similarly to the antioxidant N-acetyl-
cysteine, decreased the blood pressure and heart rate, 
improved the chronotropic response to isoproterenol, 
in association with an inhibition of sympathetic activ-
ity and the restoration of cardiac beta-adrenoceptor 
function (Girouard et al 2003) and improvement of 
baroreflex (Girouard et al 2003). In young healthy men, 
melatonin reduced pulsatile index and systolic blood 
pressure along with norepinephrine levels (Arangino 
et al 1999) and reduced blood pressure and pulse wave 
velocity in association with the attenuation of sympa-
thetic tone (Yildiz et al 2006). These sympathicolytic 
effects of melatonin may be involved in the blood pres-
sure reducing effect of melatonin seen in SHR (Pecha-
nova et al 2007), L-NAME rats (Paulis et al 2010a,b), 
healthy volunteers (Yildiz et al 2006) or patients with 
essential hypertension (Simko & Paulis 2007; Tengattini 
et al 2008; Simko & Pechanova 2009) and also partici-
pate on the improvement of insomnia and depression 
(Cardinali et al 2012). 

Conclusion
All, the partly contradictory effects of melatonin on 
vascular reactivity (Paulis et al 2009), the association 
of melatonin administration with sympatholytic effects 
(Girouard et al 2003) and the dependence of melatonin-
induced blood pressure decrease on intact spinal cord 
(Chuang et al 1993) suggest a prominent role of the cen-
tral effects of melatonin on blood pressure regulation. 
The precise site of this action, however, still needs to 
be determined. Previously, several possible sites for the 
modulation of central nervous system output by mela-
tonin were suggested: (i) the activity of the SCN might 
be modulated by melatonin activity (Reppert et al 1988; 
Dubocovich et al 1998), reducing thus the sympathetic 
tone and providing a protective mechanism against 
excessive sympathetic excitation, (ii) in neurons project-
ing from the SCN to the PVN (Klein et al 1983), or in 
neurons projecting from the CVLM to the RVLM, (Patel 
et al 2001), the GABA-ergic signaling might be potenti-
ated by melatonin (Wang et al 2003) either directly or 
via enhancement of the NO bioavailability (Rossi et al 
2004) and (iii) in the area postrema, which inhibits the 
activity of RVLM through caudal ventrolateral medulla 
(CVLM) (Patel et al 2001), melatonin is supposed to 
modify the epigenetic effect (Irmak et al 2006). In addi-

tion, in all of these brain targets, melatonin prominent 
antioxidative nature may participate on the attenuation 
of the sympathetic tone. It could be suggested that while 
the action of melatonin on the SCN might interfere with 
the nocturnal blood pressure level, the effect of melato-
nin on RVLM – most likely associated with augmented 
GABA-ergic signaling may inhibit the sympathetic 
tone and induced the overall blood pressure reduc-
tion independently on the light-dark daily periods.

In conclusion, it is supposed that the correction of 
absolute or relative melatonin deficiency by exogenous 
melatonin administration in conditions of increased 
blood pressure may help to attenuate the excessive cat-
echolamine outflow providing a rational background 
for therapeutic application of melatonin in hyperten-
sion treatment. 
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