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Abstract Obesity is a major threat to the health of the nations and its prevention has been con-
sidered as one of the main public health program in many countries around the world. 
It is a complex epidemic problem that social and cultural factors play an important role 
in obesity epidemic. Specifically, environment that elevates unhealthy eating habits is the 
main cause of weight gain. The ability to control eating to prevention weight gain is called 
self-regulation which is one of the cognitive concepts. In order to better understand the 
functional brain response in self-control areas, the aim of this research was investigating 
brain activity in response to palatable food. In this study, a normal weight woman was 
selected and her functional magnetic resonance imaging scans (viewing food and non-food 
images) were used for analysis. Neural response in some priori specified regions includ-
ing the dorsolateral and medial prefrontal cortex (DL-PFC/mPFC), inferior frontal gyrus 
(IFG) and the mid-ventrolateral prefrontal cortex (vlPFC) was assessed. A new developed 
Bayesian tool based on integrated nested Laplace approximation (INLA) was applied for 
inferences. We examined the effect of food > non-food by defining a contrast vector c = (1, 
-1, 0)/ 2. We then computed the posterior probability map based on two thresholds (γe and 
γp). The value of γe is set to 1% the global mean signals and the value of the probability 
threshold is set to γp = 0.95. The results showed greater activation in responses to food 
versus non-food stimuli in regions DL-PFC/mPFC, IFG and mid- vlPFC.
Findings represent evidence for counteractive control processes in response to food cues 
in the brain that it might be helpful to incorporate cognitive reappraisals in obesity preven-
tion via weight management. 

Abbreviations: 
functional Magnetic Resonance Imaging (fMRI); Generalized 
Linear Model (GLM); Integrated Nested Laplace Approximation 
(INLA); Posterior Probability Maps (PPMs)

Introduction
Health care is the maintenance or improvement 
of  health via the prevention, diagnosis, and treat-
ment of disease, illness, injury, and other physical and 
mental impairments in people (WHO 2013).
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Almost one-third of the US population is clinically 
obese (BMI ≥30 kg/m2) and this trend has affected all 
ethnic and socioeconomic groups (Martin et al. 2010). 
Obesity is not only a risk factor for hypertension, car-
diovascular disease, diabetes, stroke and cancer but also 
is considered as a disease itself. So it is a major threat 
to the health of the nations and its prevention has been 
considered as one of the main public health program 
in many countries around the world (Yokum & Stice 
2013).

Obesity is a complex epidemic problem. Social and 
cultural factors play an important role in obesity epi-
demic. Specifically, environment that elevates unhealthy 
eating habits (calorie-dense and low nutrient-density 
foods and meals such as fast foods) is the main cause 
of weight gain. environment has a huge impact on 
the rising numbers of overweight and obese people 
(Volkow et al. 2011; Spetter et al. 2017). The ability to 
regulate and control different behaviors such as eating 
to prevention weight gain is called self-regulation which 
is one of the social cognitive concepts (Reed et al. 2016).

In addition to environmental factors, individual 
factors are also important for obesity. Based on litera-
ture, between 45% and 85% of the variability in BMI 
are caused by genetic factors. Although genetic studies 
have manifested mutations in obese population, obesity 
is seemed to be under polygenic control (Volkow et al. 
2011). The limited statement of the variance from these 
genetic studies is likely to represent the complex inter-
actions between genetics factors and the environment 
where food is widely available as a substantial reward 
that promotes eating (Volkow et al. 2011). Number 
of processes in the brain, such as homeostatic mecha-
nisms, motivation, cognitive control and decision 
making influence on food intake. Recently researchers 
have been interested in characterizing the brain’s role 
in appetite, food motivation and obesity (Smeets et al. 
2012). Functional neuroimaging studies have assessed 
brain mechanisms underlying food intake in relation 
to weight management. Some cortical brain regions 
(orbitofrontal cortex (OFC), cingulate gyrus (ACC) 
and insula), neurotransmitter systems (dopamine, 
serotonin, opioids and cannabinoids), several limbic 
(nucleus accumbens (NAc), amygdala and hippocam-
pus) and the hypothalamus are involved in the reward-
ing effects of food (Petrovich et al. 2005; Volkow et al. 
2011). Critically, elevated reward activation to palatable 
food cues, cues signaling impending unhealthy food 
images, and high-fat/sugar images predict future weight 
gain (Stice & Yokum 2016).

In brain research, functional Magnetic Resonance 
Imaging (fMRI) has become a useful tool that uses 
blood-oxygen level dependent (BOLD) as a method for 
determining neuronal activity. 

The images collected in BOLD fMRI experiments 
generally have spatial resolution (millimeters) and tem-
poral resolution (seconds), so we encounter to massive 
amounts of highly complex correlated data (Huettel et 

al. 2004). Respect to data structure, classical generalized 
linear model (GLM) does not seem proper for consid-
eration data properties, also classical GLM suffers from 
multiple comparisons problem and lack of power to 
detect true effects (Ishwaran & Rao 2003, Marchini & 
Presanis 2004). A potential risk for fMRI data analysis 
is false positive and false negative results which must be 
controlled (Bartsch et al. 2006; Haller & Bartsch 2009, 
Magerkurth et al. 2015). Literature discussed this prob-
lem and suggested solutions. Considering these issues, 
several Bayesian GLM alternatives to the classical GLM 
have been proposed (Johnson et al. 2013; Magerkurth et 
al. 2015). The main challenge about Bayesian approach 
is its computational aspect so standard Markov chain 
Monte Carlo (MCMC) methods are typically too time-
consuming (Woolrich et al. 2004). Alternative methods 
for MCMC have been introduced such as variational 
Bayesian (VB) and integrated nested Laplace approxi-
mation (INLA) techniques which resulted in compu-
tational advances. However, it has been well-shown 
that VB approach underestimates posterior variance 
but INLA method can estimate approximations to the 
posterior distributions accurately (Wang & Tittering-
ton 2005; Rue et al. 2009, Rue et al. 2017; Sidén et al. 
2017). Accordingly, INLA is applied for inferences. 
In addition to areas involved in visual attention and 
reward processing, we assume self-regulation areas in 
response to food cues will be activated in individuals 
with a weight watching purpose. Some priori specified 
regions of interest based on recent studies include the 
dorsolateral and medial prefrontal cortex (DL-PFC/
mPFC), inferior frontal gyrus (IFG) and the mid-ven-
trolateral prefrontal cortex, which have been consis-
tently involved in the exertion of self-control (Casey et 
al. 2011, Hare et al. 2011; Heatherton & Wagner 2011). 

The current research focuses on localization of men-
tioned areas in response to palatable food. A new devel-
oped Bayesian tool based on INLA is used for inferences 
(Rue et al. 2009).

Materials and methods
Participant and experimental design
A normal weight woman was chosen. In this experi-
mental design sequences of food and non-food images 
on a white background were shown. The accession 
number of data is ds000157 in OpenfMRI database 
and detailed explanation of data is published elsewhere 
(Smeets et al. 2013).

Functional Magnetic Resonance Imaging
Functional whole-brain T2 weighted images were 
acquired by using a gradient echo 2D-echo planar imag-
ing sequence (64×64, repetition time=2100 ms, echo 
time=23 ms, flip angle=72.5, FOV=208×119×256 mm, 
SENSE factor AP=2.4, 30 axial 3.6 mm slices with 0.4 
mm gap, reconstructed voxel size=4×4×4 mm). In each 
functional run 370 scans were collected. Also a high 
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resolution T1-weighted anatomical MRI scan was made 
(3D gradient echo sequence, repetition time=8.4 ms, 
echo time=3.8 ms, flip angle=8, FOV=288×288×175, 
175 sagittal slices, voxel size=1×1×1mm). This high-
resolution anatomical image was used for image regis-
tration and anatomical localization.

Data processing and statistical analysis
First data was preprocessed using the standard prepro-
cessing steps including slice-timing, realign, smoothing, 
filtering (Glasser, Sotiropoulos et al. 2013). Preprocess-
ing was conducted using SPM12 software package 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), 
after data preparation, Bayesian GLM approach was 
fitted as follow.

Bayesian GLM approach
Suppose that there are N voxels and a sequence 
of t=1.… .T time points are extracted from each voxel. 
For a subject, the following GLM model was fitted 
(Mejia, Yue et al. 2017):

  (1)

where, y is an TN ×1 vector comprising the fMRI 
time series of all voxels, and the Xk is TN ×N design 
matrices for the activation amplitudes βk for k = 0, … , 
K, where K is the number of task under investigation. 
The matrix V is a T×T covariance matrix for an AR(p) 
process, where p is the degree of autoregressive.

The spatial correlation is considered via the 
unweighted graph-Laplacian (UGL) prior on each βk. 
UGL is defined as below (Sidén et al. 2017):

  (2)

where Dβ is a fixed spatial N×N precision matrix 
and α = (α1.….αk)' are hyper parameters to be estimated 
from the data. There are several choices for Dβ but this 
study considers UGL, which has the number of adjacent 
voxels on the diagonal for each voxel and Dβ(i.j)= -1, on 
the condition that i and j are adjacent. When model-
ing each 2D slice separately, for voxels in the interior 
part of the brain there exist 4’s on the diagonal (Sidén 
et al. 2017). The full conditional distribution of each βk 
was obtained using Bayesian computation tool based on 
INLA, which is implemented in the R-INLA package 
(Rue et al. 2009). 

To consider the temporal correlation of time series, 
the fMRI time courses were first pre-whitened by 
assuming an AR(p) process on the residuals from 
a  classical GLM with uncorrelated errors. Regarding 
data, we set p=1 (Bollmann et al. 2018). The detailed 
explanations of pre-whitened approach are given else-
where (Monti 2011).

Six rigid body realignment parameters were included 
in the model as nuisance covariates to account for noise 
due to subject motion. Furthermore, for considering 
scanner drift, linear and quadratic time terms were 
added to model.

Fig. 1. Posterior mean estimates of food vs non-food on the 15th, 20th and 14th plane out of 40 planes along the 
z-axis for DL-PFC/ mPFC, IFG and mid-VLPFC. The first and second rows show results in Axial and Sagittal views, 
respectively.

  DL-PFC/ mPFC: dorsolateral/ medial prefrontal cortex
  IFG: inferior frontal gyrus
  mid-VLPFC: mid-ventrolateral prefrontal cortex
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the testing to a region that is functionally defined on the 
basis of interested functional regions. After estimation 
temporal correlation via pre-whitening approach, the 
INLA method is applied to Gaussian likelihood func-
tion with uncorrelated errors and the posterior esti-
mates are obtained.

Image depicting the estimated coefficients is shown 
in Fig. 1 in two different Axial and Sagittal views. The 
estimates of cT β for food > non-food contrast were dis-
played on the 15th, 20th and 14th plane out of 40 planes 
along the z-axis for the DL-PFC/ mPFC, the IFG and 
the mid- vlPFC, respectively. As shown, participant 
under study showed greater responses to food vs. non-
food stimuli in these regions.

Respect to activations, we next examined, the effect 
of food > non-food by defining a contrast vector c = (1, 
-1, 0)/ 2. The value of γe is set to 1% the global mean 
signals (across voxels) and the value of the probability 
threshold is set to be γp = 0.95. We then computed the 
PPMs, results are shown in Fig. 2.

Three-dimensionally rendered SPM images repre-
senting the areas with higher reactivity of each region 
to food > non-food contrast (reflected in the activation 
of DL-PFC /mPFC, IFG and mid-VLPFC). In terms 
of timing, INLA takes 2 minutes with all computations 
performed on a MacBook Pro with 3.2-GHz and 8-GB 
memory.

Discussion
In this research, the brain activation in response to 
palatable food was investigated using INLA method 
in some pre-defined regions including the DL-PFC/ 
mPFC, IFG and mid-VLPFC. Our findings were con-
sistent with previous studies. The results showed that 
self-regulation areas response to palatable foods in 
individual who is careful about her weight. Different 

After fitting model and estimating β , the posterior 
probability maps (PPMs) on the effect of food were 
created, we did it by defining a contrast vector as c= 
(1, -1, 0) /2 then multiplied this vector by β, where β 
denotes the vector of regression coefficients at a given 
voxel. Effect size cT β measures the effect of food versus 
non-food in the experiment. The posterior distribu-
tion of the contrast was then shown across voxels using 
a PPM. This map is based on two thresholds, the first 
being an effect size threshold γe and the other being 
a  probability threshold γp. The value of γe is set to 
a constant so that cT β greater than 1% the global mean 
signals (across voxels) are remarked as “activated.” The 
value of the probability threshold is set to be γp = 0.95. 
We then computed the posterior distribution P(cT β> 
γe| Data) for each voxels and we highlighted those 
voxels where the posterior probability was greater than 
γp = 0.95 (Penny et al. 2005; Teng et al. 2018).

A region of interest (ROI) analysis was conducted 
on regions; the DL-PFC/ mPFC, the IFG and the mid- 
vlPFC. Posterior mean estimates and posterior prob-
ability map were mapped on a standardized single T1 
template in SPM (Oishi et al. 2009). Data was prepared 
by programming in MATLAB R2016b software and 
then model fitting was performed using R 14.2 soft-
ware. The INLA is now available through INLA pack-
age of the R software (http://www.r-inla.org).

Results
The ROI analysis is performed after pre-processing the 
data. Brain activation maps are viewed using the xjView 
(http:/www.alivelearn.net/xjview). The mentioned 
regions are related to self-regulation skills. The reason 
to perform an ROI analysis is to avoid the difficulty 
faced in discerning the pattern of activity across condi-
tions from an overall map. The other reason is to limit 

Fig. 2. Posterior probability map showing the activated voxels for DL-PFC/ mPFC, IFG and mid-VLPFC, with an effect 
size threshold of 1% greater than the global mean and a probability threshold of 95%. 

  DL-PFC/ mPFC: dorsolateral/medial prefrontal cortex
  IFG: inferior frontal gyrus
  mid-VLPFC: mid-ventrolateral prefrontal cortex
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literatures reported the prefrontal cortex as the most 
important area related to self-regulation skills (Miller 
& Cohen 2001; Goldberg 2002; Curtis & D'esposito 
2003). The orbitofrontal cortex, lateral PFC and the 
anterior cingulate cortex (ACC) are three main areas 
of  PFC (Banfield et al. 2004; Heatherton & Krendl 
2009). Localization of brain in task related fMRI data 
and in response to food cues has been addressed in 
several studies. Brain activation by consideration 
of weight management in some areas such as the lat-
eral PFC, IFG and the ACC was assessed by Smeets 
et al. and they concluded higher activation in men-
tioned regions (Smeets et al. 2013). A  meta-analysis 
of neural responses to food images was conducted 
and the brain response to high and low calorie foods 
was investigated. The results showed regions that lay 
within the visual system (occipital lobe) have signifi-
cant activations. The most robust activation conver-
gence was in the right fusiform gyrus. Lateralized 
convergent activations were reached in the left insula, 
right postcentral gyrus, right precuneus, left IFG, left 
middle occipital gyrus and left hippocampus. Bilateral 
convergent activations were observed in the fusiform 
gyrus, declive, parahippocampus and superior tempo-
ral gyrus (Huerta et al. 2014). Another study examined 
neural response to food choices between high and low 
calorie foods versus non-food images. Stronger signals 
in the left insula, superior temporal sulcus and poste-
rior cingulate gyrus were reported (Charbonnier et al. 
2015). Previous fMRI study in healthy weight adults 
reported greater responses in the amygdala, anterior 
fusiform gyrus and parahippocampal gyrus when 
individuals were in a hungry state compare to a satis-
fied state (Martin et al. 2010). Our finding that foods 
elicited elevated (visual) attention is well confirmed in 
the literature. A recent study identified brain regions 
associated with dietary self-control using a coordinate-
based meta-analysis on fMRI studies. They reported 
brain regions including the anterior insula, inferior 
and middle frontal gyrus, supplementary motor cortex 
and parietal cortices which related to dietary self-con-
trol (Bossier et al. 2017). Also another meta-analysis 
has shown food images elicit stronger activation in 
visual areas than non-food images (van der Laan et 
al. 2011). Importantly, as the activation of self-control 
upon confrontation with food cues is representative of 
adaptive self-regulation mechanisms, our predictions 
particularly apply to participant who would be classi-
fied as a successful self-regulator (Fishbach et al. 2003; 
Papies et al. 2008). Accordingly, woman in this study 
had normal weight so she was successful in regulating 
her food intake (Meule et al. 2012). In contrast, it is 
plausible that our results would not be confirmed in 
overweight or obese individuals who are unsuccessful 
at regulating food temptations. A novel approach for 
Bayesian inferences was used to investigate the effect 
of food cues on neural response of regions important 
to the regulation of human appetite and food intake. 

In this study, a more recently developed Bayesian 
inference tool based on INLA was applied. The INLA 
method can compute approximations to the posterior 
distributions accurately and capable to handle large 
data sets. Also it performs computation much more 
quickly than traditional Bayesian approach such as 
MCMC and can be easily conducted using the R-INLA 
package. A recent study was conducted on cortical sur-
face fMRI data from the Human Connectome Project 
(HCP) which INLA method was applied for inferences 
(Mejia et al. 2017). 

A major limitation of the current work is the regional 
based assessment so it is therefore important to conduct 
whole brain analysis to investigate more related regions. 
We performed single subject analysis, it is also possible 
to extend this Bayesian approach for including more 
subjects in analysis. Based on literature reviews only 
few neuroimaging studies have investigated the rela-
tions between genes, brain and behavior while many 
polymorphisms have been implicated in body weight 
control. It is well stablished that genetic factors have 
important roles on neural processing of self-regulation 
areas, so consideration of genetic information will 
be useful to assess the self-control cognitive process 
(Smeets et al. 2012).

Conclusion
Findings represent evidence for counteractive control 
processes in response to food cues in the brain that it 
might be helpful to incorporate cognitive reappraisals 
in obesity prevention via weight management. Since 
obesity prevention programs have not reached clinically 
meaningful reduction in future weight gain, one of the 
main priority of public health is to introduce effective 
programs.

Acknowledgments
This study is related to the project NO. 1397/58555 
from student research committee, Shahid Beheshti Uni-
versity of Medical Sciences, Tehran, Iran.
We also appreciate the Student Research Committee 
and "Research and Technology Chancellor" in Shahid 
Beheshti University of Medical Sciences for their finan-
cial support of this study. 

Disclosure
The authors declare no conflicts of interest.

REFERENCES

1  Banfield JF, Wyland CL, Macrae CN, Munte TF, Heatherton TF 
(2004). The cognitive neuroscience of self-regulation. In Bau-
meister RF, Vohs KD, editors. The Handbook of self-regulation: 
Research, theory, and applications, p. 62-83.



90 Copyright © 2019 Activitas Nervosa Superior Rediviva ISSN 1337-933X

Naseri et al: Cognitive regulation of food intake associated with weight management and obesity prevention

23  Mejia A, Yue YR, Bolin D, Lindren F, Lindquist MA (2017). A Bayes-
ian General Linear Modeling Approach to Cortical Surface fMRI 
Data Analysis. arXiv preprint, arXiv:1706.00959.

24  Meule A, Papies EK, Kübler A (2012). Differentiating between 
successful and unsuccessful dieters. Validity and reliability of the 
perceived self-regulatory success in dieting scale. Appetite. 
58(3): 822–826.

25  Miller EK & Cohen JD (2001). An integrative theory of prefrontal 
cortex function. Ann Rev Neurosci. 24(1): 167–202.

26  Monti MM (2011). Statistical analysis of fMRI time-series: a criti-
cal review of the GLM approach. Front Hum Neurosci. 5: 28.

27  Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, et al. (2009). 
Atlas-based whole brain white matter analysis using large defor-
mation diffeomorphic metric mapping: application to normal 
elderly and Alzheimer's disease participants. Neuroimage. 
46(2): 486–499.

28  Papies EK, Stroebe W, Aarts H (2008). Healthy cognition: Pro-
cesses of self-regulatory success in restrained eating. Pers Soc 
Psychol Bull. 34(9): 1290–1300.

29  Penny WD, Trujillo-Barreto NJ, Friston KJ (2005). Bayesian fMRI 
time series analysis with spatial priors. Neuroimage. 24(2): 350–
362.

30  Petrovich GD, Holland PC, Gallagher M (2005). Amygdalar and 
prefrontal pathways to the lateral hypothalamus are activated 
by a learned cue that stimulates eating. J Neurosci. 25(36): 
8295–8302.

31  Reed JR, Yates BC, Houfek J, Pullen CH, Briner W, Schmid KK 
(2016). Eating Self‐Regulation in Overweight and Obese Adults: 
A Concept Analysis. Nursing Forum. 51(2): 105–116.

32  Rue H, Martino S, Chopin N (2009). Approximate Bayesian infer-
ence for latent Gaussian models by using integrated nested 
Laplace approximations. J R Stat Soc Series B Stat Methodol. 
71(2): 319–392.

33  Rue H, Riebler A, Sørbye SH, Illian JB, Simpson DP, Lindgren FK 
(2017). Bayesian computing with INLA: a review. Annu Rev Stat 
Appl. 4: 395–421.

34  Sidén P, Eklund A, Bolin D, Villani M (2017). Fast Bayesian whole-
brain fMRI analysis with spatial 3D priors. Neuroimage. 146: 211–
225.

35  Smeets PA, Charbonnier L, van Meer F, van der Laan LN, Spetter 
MS (2012). Food-induced brain responses and eating behaviour. 
Proc Nutr Soc. 71(4): 511–520.

36  Smeets PA, Kroese FM, Evers C, de Ridder DT (2013). Allured or 
alarmed: counteractive control responses to food temptations in 
the brain. Behav Brain Res. 248: 41–45.

37  Spetter MS, Malekshahi R, Birbaumer N, Lührs M, van der Veer 
AH, Scheffler K, et al. (2017). Volitional regulation of brain 
responses to food stimuli in overweight and obese subjects: 
A real-time fMRI feedback study. Appetite. 112: 188–195.

38  Stice E & Yokum S (2016). Neural vulnerability factors that 
increase risk for future weight gain. Psychol Bull. 142(5): 447.

39  Teng M, Johnson TD, Nathoo FS (2018). Time series analysis 
of  fMRI data: Spatial modelling and Bayesian computation. Stat 
Med. 37(18): 2753–2770

40  van der Laan LN, De Ridder DT, Viergever MA, Smeets PA (2011). 
The first taste is always with the eyes: a meta-analysis on the 
neural correlates of processing visual food cues. Neuroimage. 
55(1): 296–303.

41  Volkow ND, Wang G-J, Baler RD (2011). Reward, dopamine and 
the control of food intake: implications for obesity. Trends Cogn 
Sci. 15(1): 37–46.

42  Wang B & Titterington D (2005). Inadequacy of interval estimates 
corresponding to variational Bayesian approximations. AISTATS, 
Barbados.

43  Woolrich MW, Jenkinson M, Brady JM, Smith SM (2004). Fully 
Bayesian spatio-temporal modeling of fMRI data. IEEE Trans Med 
Imaging. 23(2): 213–231.

44  Yokum S & Stice E (2013). Cognitive regulation of food crav-
ing: effects of three cognitive reappraisal strategies on neural 
response to palatable foods. Int J Obes (Lond). 37(12): 1565.

2  Bartsch AJ, Homola G, Biller A, Solymosi L, Bendszus M (2006). 
Diagnostic functional MRI: Illustrated clinical applications and 
decision‐making. J Magn Reson Imaging. 23(6): 921–932.

3  Bollmann S, Puckett AM, Cunnington R, Barth M (2018). Serial 
correlations in single-subject fMRI with sub-second TR. Neuroim-
age. 166: 152–166.

4  Bossier H, Seurinck R, Kuhn S, Banaschewski T, Barker GJ, Bokde 
AL, et al. (2017). The Influence of study characteristics on coor-
dinate-based fMRI meta-analyses. bioRxiv: the preprint server for 
biology, doi: https://doi.org/10.1101/144071.

5  Casey B, Somerville LH, Gotlib IH, Ayduk O, Franklin NT, Askren 
MK, et al. (2011). Behavioral and neural correlates of delay 
of gratification 40 years later. Proc Nat Acad Sci. 108(36): 14998–
15003.

6  Charbonnier L, Van Der Laan LN, Viergever MA, Smeets PA (2015). 
Functional MRI of challenging food choices: forced choice 
between equally liked high-and low-calorie foods in the absence 
of hunger. PLoS One. 10(7): e0131727.

7  Curtis CE & D'esposito M (2003). Success and failure suppressing 
reflexive behavior. J Cogn Neurosci. 15(3): 409–418.

8  Fishbach A, Friedman RS, Kruglanski AW (2003). Leading us not 
into temptation: Momentary allurements elicit overriding goal 
activation. J Pers Soc Psychol. 84(2): 296.

9  Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, 
Andersson JL, et al. (2013). The minimal preprocessing pipelines 
for the Human Connectome Project. Neuroimage 80: 105–124.

10  Goldberg E (2002). The executive brain: Frontal lobes and the civ-
ilized mind, Oxford University Press, USA, ISBN 978-0195156300, 
251 p.

11  Haller S & Bartsch AJ (2009). Pitfalls in fMRI. Eur Radiol. 19(11): 
2689–2706.

12  Hare TA, Malmaud J, Rangel A (2011). Focusing attention on the 
health aspects of foods changes value signals in vmPFC and 
improves dietary choice. J Neurosci. 31(30): 11077–11087.

13  Health Topics: Health Systems. www.who.int. World Health Orga-
nization. Retrieved. 2013-11-24.

14  Heatherton T & Krendl A (2009). Social emotions: neuroimaging. 
Encyclopedia of Neuroscience. 9: 35–39.

15  Heatherton TF & Wagner DD (2011). Cognitive neuroscience 
of self-regulation failure. Trends Cogn Sci. 15(3): 132–139.

16  Huerta CI, Sarkar PR, Duong TQ, Laird AR, Fox PT (2014). Neural 
bases of food perception: Coordinate‐based meta‐analyses 
of  neuroimaging studies in multiple modalities. Obesity. 22(6): 
1439–1446.

17  Huettel SA, Song AW, McCarthy G (2004). Functional magnetic 
resonance imaging. 1st ed. Sinauer Associates Sunderland, MA.

18  Ishwaran H & Rao JS (2003). Detecting differentially expressed 
genes in microarrays using Bayesian model selection. J Am Stat 
Assoc. 98(462): 438–455.

19  Johnson TD, Liu Z, Bartsch AJ, Nichols TE (2013). A Bayesian non-
parametric Potts model with application to pre-surgical FMRI 
data. Stat Methods Med Res. 22(4): 364–381.

20  Magerkurth J, Mancini L, Penny W, Flandin G, Ashburner J, 
Micallef C, et al. (2015). Objective Bayesian fMRI analysis—a pilot 
study in different clinical environments. Front Neurosci. 9: 168.

21  Marchini J & Presanis A (2004). Comparing methods of analyzing 
fMRI statistical parametric maps. Neuroimage. 22(3): 1203–1213.

22  Martin LE, Holsen LM, Chambers, RJ, Bruce AS, Brooks WM, Zar-
cone JR, et al. (2010). Neural mechanisms associated with food 
motivation in obese and healthy weight adults. Obesity. 18(2): 
254–260.


