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Abstract Research of visual working memory has been dominated by efforts to establish the nature 
and origin of its apparent capacity limitation. Experiments focusing on visual working 
memory precision, rather than capacity, have yielded evidence for alternative models 
that operate with a shared continuous resource as opposed to a few discrete slots. Despite 
considerable research effort over the past two decades, the debate is still ongoing and 
new findings and hypotheses continue to emerge. We provide a short review of the most 
important findings with respect to visual working memory models, including the most 
recent proposals which try to unify the existing approaches into a common framework.

Introduction
Over the last two decades, visual working memory 
(VWM) has been a subject of intense research in the 
fields of cognitive psychology and neuroscience. WM 
enables performing complex tasks such as learning, 
perception, problem solving, or action control. It is 
considered crucial for a general cognitive ability and 
varies substantially across individuals (Baddeley 2003; 
Ma et al. 2014). One of the main open questions is the 
nature of VMW capacity limitation, which is restricted 
to 3–4 objects (Luck & Vogel 2013). Since Vogel and 
Machizawa (2004) established an electrophysiological 
index of this limit in storage capacity (the so-called 
contralateral delay activity, CDA), supporting the 
model of discrete slots (see below), numerous alter-
native models have been proposed to explain and 

integrate the new growing body of knowledge. These 
explain the apparent limit in capacity by a finite amount 
of resources which can be allocated between multiple 
objects with varying degrees of precision (resource-
based models, e.g. Bays & Husain 2008; Ma et al. 2014), 
an interconnection between these two mechanisms, 
also referred to as hybrid models (Machizawa et al. 
2020), or indeed an entirely new unifying framework, 
which is the alternative supported by the most recent 
evidence (Schneegans et al. 2020).

According to resource-based models, the limits 
VWM are best characterised by the quality or preci-
sion of memory, rather than the quantity of discrete 
items which are stored and subsequently recalled. 
These models are based on two basic premises: (a) the 
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internal representations of sensory stimuli are corrupted 
by random fluctuations (noise), and (b) the level of such 
noise is proportional to the number of  stored stimuli 
and attributed to limitations of the representational 
medium (whose precise nature remains to be estab-
lished yet). The inherent presence of noise is in line 
with Bayesian models of perception, which postulate 
that observers make decisions based on noisy evidence 
using probabilistic inference, where performance 
increases continuously with signal-to-noise ratio. On 
the other hand, the increase in noise with set size is 
common to existing models of attention (Ma et al. 2014; 
Wilken & Ma 2004).

Ma et al. (2014) distinguished four classes of current 
VWM models:
a)  Discrete slots – there is a number of independent 

memory slots where each item is stored with a high 
resolution. The items are then either recalled with 
high precision or guessed randomly depending on 
whether they received a slot.

b)  Equal resources – there is a limited supply of some 
representational medium which is shared between 
all items without any limit on the number of items. 
The precision of recall depends on the amount 
of  resource allocated to each item and since each 
item receives an equal share, the error variability 
increases with the number of items.

c)  Discrete representations – the representational 
medium is divided into multiple slot-like quanta 
which are shared between items and may combine 
for low set sizes, thus increasing the resolution. For 
higher set sizes exceeding the number of available 
quanta, the model predicts a mixture of low-resolu-
tion recall and random guesses.

d)  Variable precision – the precision varies between 
trials as well as individual items around a mean 
which decreases as the number of items increases.

In contrast to discrete slots, all other models (i.e. equal 
resources, discrete representations, and variable preci-
sion) can be classified as resource-based.

Evidence from behavioural studies
Wilken and Ma (2004) adapted and further developed 
the delayed-estimation technique based on changing the 
stimuli and response probes on a continuous scale (e.g. 
colour hue). This manipulates the signal-to-noise ratio 
in order to measure the level of noise in memory repre-
sentations, as opposed to conventional discrete methods 
for probing working memory such as change detection 
or digit span where the stimulus or change in stimulus 
is held constant to produce a discrete measure such as 
the number of objects. The technique has been applied 
to a range of visual features such as colour (Fougnie 
et al. 2012; Wilken & Ma 2004), orientation (Gorgo-
raptis et al. 2011), or motion (Zokaei et al. 2011). For 
all features, recall variability (and hence imprecision) 

has been shown to gradually and continuously increase 
with set size, which is expected if resources are shared 
between multiple representations (Ma et al. 2014). 

The flexibility in resource allocation is supported by 
a growing body of evidence indicating uneven distribu-
tion guided by voluntary control in order to increase the 
precision of prioritised items. For example, in studies 
where one stimulus in a memory array was marked as 
more likely to be selected as a later probe, a robust gain 
in recall was observed for the cued stimulus compared 
to other (non-cued) stimuli whose recall precision 
decreased (Bays et al. 2011a; Bays & Husain 2008; 
Gorgoraptis et al. 2011; Ma et al. 2014; Zokaei et  al. 
2011). Several facts indicate that these findings are not 
explained by biased sensory processing in favour of the 
prioritised items: (a) The results remain consistent 
when stimuli are presented sequentially one at a time, 
thus eliminating competition in sensory input. (b) Cues 
presented after a prolonged examination of a stimulus 
array as well as ones presented at the beginning of the 
stimulus interval are of similar effectiveness, suggesting 
that the resolution of working memory can change by 
a rapid reallocation after the initial encoding is complete 
to prioritise salient or goal-relevant information (Bays 
et al. 2011a). (c) Recall precision can be influenced by 
retrospective cues presented when the sensory input is 
no longer available (Ma et al. 2014; Pertzov et al. 2013a). 
Behavioural priorities thus seem to control the alloca-
tion of limited resources while similar recall advantages 
and costs have been shown for visually conspicuous 
objects even when the test probability was equal. This 
suggests a form of autonomous control which might be 
linked to visual attention, whose involvement was also 
supported by the observations of recall advantages for 
targets of saccades in humans and for targets of covert 
attentional shifts inferred from micro-saccades in 
rhesus monkeys (Bays et al. 2011a; Lara & Wallis 2012; 
Maurer et al. 2014; Melcher & Piazza 2011; Shao et al. 
2010).

Another open question is the origin of the noise 
responsible for the variance in working memory preci-
sion. The errors in recollection of a stimulus could arise 
from multiple sources across all stages of information 
processing. This includes decreased precision of early 
sensory representations, for example due to physical 
stimulus properties such as luminance or contrast, or 
incomplete encoding of multiple or complex stimuli. 
This process is not instantaneous and when the time 
for encoding is systematically varied, the rate of recall 
precision increase depends on the number of visual 
elements (Bays et al. 2011a). Another potential sources 
are the attentional or storage capacity limitations, mani-
fested by a limit on the precision even over prolonged 
exposure. This is in line with the experimental evidence 
introduced with discrete models (Ma et al. 2014). 
The errors could also emerge during maintenance, as 
evidenced by the increase in recall variability propor-
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reflecting the number of items in memory (Ma et al. 
2014). Neural activity increases with memory load for 
up to 3–4 objects, but reaches plateau at higher loads. 
This has been interpreted as reflecting the maximum 
WM capacity and thus a property predicted by slot-
based models. However, establishing the significance 
of  a  signal plateau in the presence of noise is not 
trivial and the methods used so far have relied either 
on subjective visual judgement or statistical testing. It 
is therefore necessary to establish whether the signals 
reach a maximum when a particular number of objects 
is presented, or further increase with increasing number 
of objects toward an asymptotic limit (Ma et al. 2014). 
Furthermore, the basis for the neural correlates of WM 
performance might be more complex than assumed. 
For instance, it has been suggested that the increase 
in CDA amplitude may result from averaging of EEG 
oscillations in the alpha band (9-13 Hz) whose power 
is modulated asynchronously over multiple trials (van 
Dijk et al. 2010). Resource-based models, on the other 
hand, postulate utilisation of the same resources regard-
less of the number of objects that are being stored, yet 
load-dependent signals can still be explained in terms 
of reflecting increased synaptic processing as a result 
of increasing set size. They might also be associated 
with the maintenance of “meta-information” facili-
tating resource allocation or bindings between different 
features (Bays et al. 2011b; Ma et al. 2014; Wheeler & 
Treisman 2002).

The ongoing debate
Adam et al. (2017) brought yet more evidence for item 
limits in VWM. They developed a new experimental 
paradigm in which participants recalled the precise 
colour or orientation of every displayed item irrespec-
tive of the order and assumed that if there are no item 
limits, some amount of information should be measur-
able across all responses. They found that participants 
consistently reported items in the decreasing order 
of  precision and that the final three responses were 
best modelled by a parameter-free uniform distribu-
tion, indicating guessing. In order to explore a key 
claim of the variable precision model – that all repre-
sentations contain measurable information – they also 
used computational simulations and showed that there 
is little evidence to reject guessing in favour of memo-
ries that contain extremely little information and thus 
become indistinguishable. These results thus support 
a model of a discrete capacity limit, which is often not 
achieved likely due to fluctuations in attentional control 
(Adam et al. 2015, 2017).

Bays (2018) subsequently addressed these conclu-
sions by pointing out that rather than demonstrating 
change in performance indicative of individual capacity 
being reached, Adam and co-workers arbitrarily set 
the level of variability beyond which responses were 
considered uniform (and thus pure guesses). He further 

tional to the duration of the delay period (Pertzov et al. 
2013b).

Contributions from neuroscience
The RThe majority of computational VWM models 
assume that the retention of visual representations 
occurs in a recurrent feedback loop between multiple 
neuronal populations, which explains an increase in 
neural activity during the retention period. According 
to models based on recurrent neural networks, object 
representations are formed and maintained by dynami-
cally-formed synchronous neuronal populations, while 
asynchronous activity of such units allows multiple 
representations to co-exist (Deco & Rolls 2008; Luck 
& Vogel 2013). Using biologically realistic parameters, 
these models reveal capacity limitations similar to in 
vivo findings (Raffone & Wolters 2001). The number 
of oscillatory states that can be superimposed without 
interference could thus explain the capacity limitations 
within the framework of slot-based models, however 
physiological evidence for oscillatory models has been 
sparse (Lisman & Idiart 1995; Ma et al. 2014).

On the other hand, rate coding of WM represen-
tations seems to be compatible with resource-based 
models. During WM encoding, the number of action 
potentials varies considerably from trial to trial, which 
might be the source of noise present during recall 
(van den Berg et al. 2012; Ma et al. 2014; Ma & Huang 
2009). Furthermore, an interconnection between the 
memory resource and the magnitude of neural activity 
(gain) in a neural population representing an object is 
supported by a body of evidence. For example, models 
of early sensory representation postulate that the neural 
gain is proportional to the stimulus encoding preci-
sion (Ma et  al. 2006) and note the presence of simi-
larities between resource for working memory and 
attention, where the latter has been shown to modulate 
neural gain (Awh & Jonides 2001; Mazyar et al. 2012; 
McAdams & Maunsell 1999). Furthermore, neuro-
physiological evidence shows that firing rate is inversely 
proportional to increasing set size (Churchland et  al. 
2008) and varies between trials (Churchland et al. 
2011), or that energy conservation leads to fewer spikes 
at the cost of decreased precision at large set sizes (van 
den Berg et al. 2012; Ma et al. 2014). Computational 
models involving shared resource mechanisms support 
the plausibility of the resource-based accounts of WM, 
yielding decreased memory precision with increasing 
set size, in agreement with behavioural findings (Wei 
et al. 2012). 

Functional neuroimaging studies have identi-
fied regions within prefrontal and posterior parietal 
cortex with elevated activity during working memory 
maintenance (Linden et al. 2003; Todd & Marois 
2004) while electroencephalographic (EEG) studies 
observed for example the already mentioned CDA 
(Anderson et al. 2011; Vogel & Machizawa 2004), both 
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argued that the results can be well explained also by 
resource models with no fixed capacity and showed that 
estimations of individual capacity can yield inconsistent 
results when the slot-based model is adopted. 

Most recently, Schneegans et al. (2020) used a novel 
approach rooted in the principles of neural coding as 
a framework for explaining VWM limits and demon-
strated that three of the most prominent competing 
models can be expressed in terms of the same unifying 
mathematical framework of sampling. The sampling 
interpretation of VWM models proposes that coding 
performed by a neural population should be rein-
terpreted as sampling, i.e. the evoked response of an 
idealised population of spiking neurons to a stimulus 
depends on their individual tuning described by the 
tuning function and the preferred value. Associating 
spikes over a fixed decoding window with the preferred 
stimuli of the respective neurons creates a probability 
distribution over stimulus space that is then used 
to  create a maximum likelihood estimate, assuming 
the same total activity when encoding multiple items, 
where larger set sizes correspond to less mean activity 
per item. Precision is defined as the width of the likeli-
hood function and discretely distributed as a product 
of tuning precision and the number of spikes, which 
varies stochastically. The retrieval of a visual feature 
from VWM can then be described as estimation based 
on stochastically varying number of noisy samples. 
According to the authors, two other influential models 
of VWM can be reconceptualised using the same frame-
work: (a) the discrete representations model (referred 
to by the authors as slots+averaging), which is directly 
equivalent to a sampling model with a fixed number 
of samples; (b) the variable precision model, where 
samples become less precise and more numerous, while 
maintaining fixed proportionality between variance 
and mean of the precision in the decoded estimate. 
This allowed Schneegans and co-workers to identify 
the key differences between the models as well as the 
critical factors to account for the differences in experi-
mental data that do not decisively favour either one 
of the main ‘standard’ models. Importantly, this new 
approach is agnostic with regard to whether objects or 
features are the units of VWM storage, because both 
options are compatible and depend on whether the 
encoding neurons are sensitive to sole features or their 
conjunctions.

Conclusion
Despite the apparent shift towards understanding the 
nature of the capacity limitation of VWM as a contin-
uous resource guided by attentional selection, the debate 
and competition between various models is ongoing. 
The most recent re-conceptualisation by Schneegans 
et al. (2020) offers an intriguing novel framework with 
a unifying potential that provides new opportunities 
for further research. The sampling framework certainly 

has some limitations, which are yet to be explored in 
detail, but the approach has been gaining popularity in 
neuroscience as a neurobiologically plausible account 
of how Bayesian inference may be performed online 
in the brain as it is presented with new information 
(Radulescu et al. 2021). For VWM, the current knowl-
edge thus seems to favour resource-based approaches 
that implement the characteristics which result in some 
sort of discretisation.
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