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Abstract Many natural polyphenolic agents, such as curcumin, catechin, or resveratrol may have 
significant neuroprotective benefits due to their antioxidant, anti-inflammatory, and 
antiproliferative effects. The main obstacles to the use of natural polyphenols are low 
stability, poor solubility, and low bioavailability. Several nano-formulations, including lipid 
nanoparticles, micelles, liposomes, and polymeric nanoparticles, have been formulated 
to increase the bioavailability and stability, and thus the therapeutic efficacy of natural 
polyphenols. In addition to prolonging the half-life, the role of nanoparticles in neuro-
protection lies in their ability to cross the blood-brain barrier. Recently, some of these 
nanocarriers have already been modified with targeted molecules capable of recognizing 
defined areas of the brain. The review is focused on neuroprotective effects of curcumin-, 
catechin-, and resveratrol-loaded nanoparticles. 

Introduction
Since they can cross the blood-brain barrier, 
curcumin, catechin, and resveratrol could be regarded 
as potential therapeutic agents for the treatment 
of central nervous system-associated diseases (Bandi-
wadekar et  al. 2021; Maiti & Dunbar 2018; Shahbaz 
et al. 2021). Neurodegenerative diseases such as 
Alzheimer's disease, Parkinson's disease, Huntington 
disease, or amyotrophic lateral sclerosis affect any 
part of the brain. Although the complete mechanism 
of neurodegenerative diseases is unknown, there are 
different molecular mechanisms and processes that 
could be positively affected. Compared with a classical 
treatment, natural compounds have better compat-
ibility with the human body along with lesser side 
effects (Dayar et al. 2020,2021; Cebova & Pechanova 
2020; Lietava et al. 2019; Cebova et al. 2017). More-

over, several studies have shown that various natural 
compounds have significant neuroprotective, antioxi-
dant, and anti-inflammatory properties that might be 
beneficial in neurodegenerative diseases (Kovacsova 
et al. 2010; Maiti & Dunbar 2018). In addition, natural 
compounds also eliminate destructed biomolecules 
before their accumulation affects cell metabolism, thus 
improving the disease conditions (Bandiwadekar et al. 
2021). Despite the beneficial effects of natural poly-
phenols, they have also a few limitations including 
poor water solubility, low bioavailability, and short 
systemic circulation which is restrained its clinical 
application (Na Bhuket et al. 2017; Obulesu 2021). 
To  overcome these limitations and enhance the 
bioavailability, nanoparticle-based delivery systems 
have been developed and intensively studied (Pecha-
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nova et al. 2019, 2020; Chen & Liu 2012). Liposomes, 
polymeric nanoparticles, and solid-lipid nanoparticles 
are the most studied nanoparticles (NPs) in terms 
of non-invasive brain drug-delivery materials with 
specific characteristics like biocompatibility, stability, 
low antigenicity, and high biodegradability. The capa-
bility of nano-systems to cross the blood-brain barrier 
(BBB) depends on their physicochemical properties, 
and therefore nanocarriers must meet several require-
ments as being non-toxic, able to carry the desired drug 
and able to interact with receptors present at the BBB 
(Chen & Liu 2012; Neves et al. 2016). The nanocarriers 
have emerged as one the most effective smart platforms 
for controlled discharge of their cargo in target sites 
(Masoudi et al. 2020). Some nanoparticles are designed 
to enhance the penetration of BBB and to target specific 
domains within cells. Their efforts focus on localiza-
tion of intracellular or to reach extracellular molecules, 
such as amyloid-beta plaques in Alzheimer’s disease 
(Masoudi et al. 2020). 

Indeed, natural polyphenols-loaded nanoparticles 
showed improved effects in both in vitro and in vivo 
studies (Yavarpour-Bali et al. 2019; Obulesu 2021; 
Shahbaz et al. 2021). Recently it has been reported 
that curcumin-loaded nanoparticle systems increase 
the circulating levels of curcumin and improve the 
chemical stability that results in preventing its enzy-
matic and pH degradation (Yavarpour-Bali et al. 
2019). The results of Marslin et al. (2017) even showed 
that curcumin-loaded poly (ethylene glycol) poly 
(ε-caprolactone) di-block copolymer nanoparticles 
possess significantly stronger neuroprotective effect in 
U251 human glioma cells compared to free curcumin 
and curcumin-loaded poly (ε-caprolactone) nanopar-
ticles (Marslin et al. 2017). Smith et al. (2010) showed 
that forming nanolipidic (-)-epigallocatechin-3-gallate 
particles improves the neuronal (SweAPP N2a cells) 
alpha-secretase enhancing ability in vitro by up to 91% 
and oral bioavailability in vivo by more than two-fold 
over free (-)-epigallocatechin-3-gallate. Thus, because 
of better beneficial effects, some natural polyphenols-
loaded nanoparticles may represent a useful tool for the 
treatment of neurodegenerative diseases like Alzheim-
er’s or Parkinson’s disease (Yavarpour-Bali et al. 2019; 
Andrade et al. 2018).

Curcumin
Curcumin isolated from a plant Curcuma Longa L. 
and presented in spice turmeric is known as a hydro-
phobic polyphenol (Fig. 1). It has pleiotropic actions 
and exhibits several therapeutical and pharmaco-
logical activities as well as anti-inflammatory, anti-
amyloid, antioxidant, and neuroprotective effects. 
Since it can cross the blood-brain barrier, curcumin 
could be regarded as a potential therapeutic agent for 
the treatment of central nervous system-associated 
diseases (Maiti & Dunbar 2018; Shahbaz et al. 2021). 

Despite the beneficial effects of curcumin, it has also 
a few limitations including poor water solubility, low 
bioavailability, and short systemic circulation which is 
restrained its clinical application (Na Bhuket et al. 2017; 
Obulesu 2021; Barta et al. 2015). To overcome these 
limitations and enhance its bioavailability, nanopar-
ticle-based delivery systems have been developed and 
showed improved effects of curcumin in in vitro and 
in  vivo studies (Yavarpour-Bali et al. 2019; Obulesu 
2021; Shahbaz et al. 2021). 

Curcumin-loaded nanoparticle
In numerous studies, it has been reported that different 
curcumin-loaded nanoparticle systems including poly 
(lactide-co-glycolide) (PLGA), poly (ε-caprolactone) 
(PCL) or methoxy poly (ethylene glycol) poly 
(ε-caprolactone (MPEG-PCL), poly-ethylene glycol-
polylactic acid co block polymer (PEG-PLA), alginate-
curcumin nanocomposite, lipid-core nano-capsules, 
solid lipid nanoparticles and nanostructured lipid 
carriers (NLC), nano-emulsion are widely examined 
in central nervous system disorders. These curcumin-
loaded nanoparticle systems increase the circulating 
levels of curcumin and improve the chemical stability 
that results in preventing its enzymatic and pH degra-
dation (Yavarpour-Bali et al. 2019). 

Curcumin encapsulation into PCL or MPEG-PCL 
in the form of nanoparticles enhanced the aqueous 
solubility of this compound. The cellular uptake 
of  curcumin-loaded MPEG-PCL nanoparticles was 
greater than curcumin encapsulated in PCL nanopar-
ticles and free curcumin (Marslin et al. 2017). Tsai et al. 
demonstrated that curcumin-loaded PLGA nanopar-
ticles delivered to neuronal cells were present in several 
regions of the brain such as hippocampus and cerebral 
cortex (Tsai et al. 2011). Doggui et al. showed that 
these nanoparticles were nontoxic to human neuro-
blastoma SK-N-SH cells. Moreover, they could protect 
SK-N-SH cells against H2O2 and prevent the elevation 
of reactive oxygen species (ROS) and the consump-
tion of glutathione (Doggui et al. 2012). It has been 
suggested that curcumin encapsulated-PLGA nanopar-
ticles were able to destroy amyloid aggregates, exhibit 
antioxidative properties and can be used in treating 
Alzheimer’s disease (Mathew et al. 2012). Curcumin-
loaded PLGA nanoparticles increased the number 
of synapses, prevented inflammation by decreasing 
pro-inflammatory cytokines (IL-6, TNF-alpha), and 
restored antioxidant activity via decreasing the ROS 
level and increasing the level of superoxide dismutase 
in the mouse brain (Huang et al. 2014). Another study 
reported that curcumin-loaded PLGA nanoparticles 
may increase the action of curcumin on several path-
ways like inhibit the phosphorylation of Akt and Tau 
proteins in SK-N-SH cells induced by H2O2. Moreover, 
they displayed higher anti-inflammatory and antioxi-
dant activities than free curcumin (Djiokeng Paka et al. 
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some and cubosome nanoparticles in SH-SY5Y cells 
decrease the H2O2-induced cell death and ROS accu-
mulation (Rakotoarisoa et al. 2019). Ramires Junior 
et al. investigated the comparison between curcumin-
loaded nano-emulsion and free curcumin in an experi-
mental model of Parkinson’s disease. It was reported 
that both curcumin-loaded nano-emulsion and free 
curcumin treatment significantly improved motor 
impairment, reduced lipoperoxidation, modified anti-
oxidant defence, and prevented inhibition of complex 
I. However, curcumin-loaded nano-emulsion was more 
effective in preventing motor impairment and inhibi-
tion of complex I when compared to free curcumin. 
These results point to nano-emulsion as a promising 
nanomedical tool and a neuroprotective strategy for 
Parkinson’s disease (Ramires Junior et al. 2021).

Catechins
Catechins belong to the group of flavan-3-ols (flava-
nols), part of the chemical family of flavonoids (Fig. 1). 
The main dietary sources of catechins are tea, pome 
fruits and cocoa. Usual, they are derived from green 
tea and began to be famous for their beneficial effects 
on several degenerative diseases (Thangapazham et al. 
2007; Ananingsih et al. 2013). Epigallocatechin-3-
gallate, is the ester of epigallocatechin and gallic acid 
(EGCG) and is a type of catechin (Fig. 1). EGCG is 
the most abundant catechin in tea. These polyphe-
nolic compounds are rich in phenolic hydroxyl groups 
which provide strong antioxidant activity and may 
play a serious role in protecting against cancer, cardio-
vascular disease, and other chronic conditions (Khan 
& Mukhtar 2007; Eng et al. 2018; Bernatova 2018). 
However, similarly to many other natural polyphe-
nols, the pharmaceutical activity of catechins including 
EGCG is limited due to low bioavailability and chemical 
instability (Lambert & Yang 2003). For example, when 
taken orally, EGCG has poor absorption even at daily 
intake equivalent to 8–16 cups of green tea (Chow et al. 
2003). It has been shown that different nano-systems 
serving as catechin carriers may overcome this problem 
(Yan et al. 2019; Kaur et al. 2019; Yang et al. 2021).

Catechin-loaded nanoparticle
Recently it has been documented that catechin-loaded 
polylactide nanoparticles further enhance cell survival 
against toxic protein aggregates. This nanoparticle 
system has been especially designed as delivery carrier 
of anti-amyloidogenic molecules (Mandal et al. 2020). 
The encapsulation of EGCG in caseinophosphopep-
tide (CPP) and chitosan (CS) (CS−CPP) nanoparticles 
could be a potential approach to enhance its antioxi-
dant activity in biological systems. The encapsulation 
efficiency of EGCG in CS− CPP nanoparticle was 
considerably higher than that in CS−tripolyphosphate 
nanoparticles, and the burst release of EGCG was 

2016). PLGA nanoparticles thus represent a promising 
strategy for the brain delivery of drugs for the treat-
ment of Alzheimer’s but also other diseases. Similarly, 
curcumin-loaded lipid-core nano-capsules displayed 
significant neuroprotection against β-amyloid1-42 
(Aβ1-42)-induced behavioural and neurochemical 
changes in Alzheimer’s disease model (Giacomeli et al. 
2019). 

In an experimental model of epilepsy, curcumin-
loaded nanoparticles effectively upregulated the levels 
of erythropoietin and klotho, which is a life extension 
factor. Moreover, mRNA level of TNF-α in the hippo-
campus was considerably reduced after the treatment 
with curcumin-loaded nanoparticles (Mansoor et al. 
2018). Curcumin-encapsulated nanoparticles enter the 
cells and could reduce apoptosis in an in vitro model 
of Huntington’s disease, a hereditary neurodegenerative 
condition. Moreover, curcumin-loaded nanoparticles 
were efficiently up-taken by a well-validated and widely 
used neuronal-like Huntington’s disease model and no 
toxic effect was detected (Pepe et al. 2020).

Other promising drug delivery systems like SLNs 
and NLCs may enhance the efficacy of curcumin 
delivery to the brain. Using these systems, a 1.5-fold 
higher permeability of curcumin through the blood-
brain barrier has been shown. However, the potential 
of these nano-systems needs to be further explored 
in vivo to demonstrate the interactions with plasma 
proteins and recognition by the immune system that 
nanoparticles encounter in vivo, as well as to study 
their biodistribution through body organs and tissues. 
Both SLNs and NLCs are promising for curcumin brain 
delivery, protecting the incorporated curcumin, and 
targeting the brain by the addition of transferrin to the 
surface of nanoparticles (Neves et al. 2021). Curcumin 
loaded SLNs and dexanabinol increased the mRNA 
and protein expression levels of the mature neuronal 
markers’ neuronal nuclei, mitogen-activated protein 
2, and neuron-specific beta-tubulin III, promoted the 
release of dopamine and norepinephrine, and increased 
the mRNA expression of CBR1 and the downstream 
genes Rasgef1c and Egr1, and simultaneously improved 
rat locomotor function. However, SLNs loaded with 
curcumin and dexanabinol had no antidepressant 
effects on the CBR1–/– mouse models of major depres-
sive disorder (He et al. 2021). 

Alkynylated cellulose nanocrystals (ACNC) 
nanoparticle system in alpha-synuclein-induced cyto-
toxicity in SH-SY5Y neuroblastoma cells (Parkinson’s 
disease model) could reduce apoptosis, postpone the 
loss of climbing ability, and decrease the oxidative 
damage (Siddique et al. 2013). It has also been demon-
strated that ACNC-curcumin can significantly reduce 
oxidative stress and apoptosis in the brain of Parkin-
son’s disease files (Siddique et al. 2014). BSA-based 
nano-curcumin in SH-SY5Y cells improved p-Akt/t-
Akt signalling and prevent cell death (Sookhaklari 
et al. 2018). Curcumin and fish oil-loaded spongo-
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a concentration-dependent fashion, and release studies 
were carried out. The findings revealed that, under Cu 
(II)-induced oxidative stress, the loading ability of the 
PEGylated/CTAB silica nanoparticles was concentra-
tion-dependent, based on their catechin release profile. 
Catechin-loaded silica nanoparticles enhanced protec-
tive activity against oxidative stress and hippocampal 
cell survival compared to quercetin (Halevas et al. 
2016).

Dual drug loaded PEGylated PLGA nanoparticles 
(EGCG/ Acetyl acid NPs) have the potential to be 
developed as a safe and suitable therapeutic alternative 
for the treatment of Alzheimer’s disease. Oral admin-
istration of EGCG/Acetyl acid NPs in mice resulted in 
EGCG accumulation in all major organs, including the 
brain. It has been shown that this formulation could 
be able to increase drug permanence in blood stream 
and brain tissue (Cano et al. 2019). Recently, Yang 
et  al. (2021) studied a nano-delivery system surface-
modified with RD2 peptide (polypeptide sequence 
PTLHTHNRRRRR) for brain tissue penetration and 
β-amyloid (Aβ) binding. Epigallocatechin-3-gallate was 
selected for encapsulation and its therapeutic potential 
for Alzheimer's disease was investigated. The four-week 
RD2-NP/EGCG treatment significantly decreased the 
expression of the pro-inflammatory cytokine TNF-α 
and IL-1β, restored neuronal losses and hippocampal 
damage, and ameliorated spatial memory impairment 
in Alzheimer's disease model mice. Moreover, treat-
ment with the RD2-NP/EGCG did not present organ 
toxicity. Surface modified RD2 peptide nano-delivery 
system can efficiently deliver drugs to Alzheimer's 
disease lesions and improve the therapeutic effect 
of EGCG on Alzheimer's disease (Yang et al. 2021).

slowed in a more controllable manner for CS−CPP 
nanoparticles as well. The nanoparticles assembled 
with bioactive polysaccharide and bioactive peptides 
should be efficient carriers for enhancing the bioavail-
ability of EGCG (Hu et al. 2013). Combination therapy 
of curcumin and EGCG encapsulated biopolymer 
nanoparticle study even showed that presence of EGCG 
greatly improved the functional properties including 
the dispersibility, encapsulation properties, and anti-
oxidant activity of curcumin (Yan et al. 2019).

In another approach as an oral delivery system, 
EGCG loaded solid lipid nanoparticles (SLN-EGCG) 
were developed. Results of this study showed that the 
SLN-EGCG did not show any acute or sub-chronic 
toxicity when compared with free EGCG in the rat 
model. Moreover, pharmacokinetic parameters indi-
cated significantly improved bioavailability and protec-
tion of EGCG from degradation due to encapsulation 
into SLN. SLN-EGCG can enhance the bioavailability 
and stability and moreover ensure a slow and sustained 
release of EGCG which was indicative of reduced 
dosage frequency. Histopathology and toxicity studies 
further confirmed no treatment-related side effects 
and suggested that this formulation is safer for oral 
administration over a longer period (Ramesh & Mandal 
2019). In a different study Kaur et al. have shown that 
SLN-EGCG enhanced brain EGCG bioavailability and 
penetration (Kaur et al. 2019).

Poly (ethyleneglycol) and cetyltrimethylammonium 
bromide (CTAB)-modified silica nanoparticles were 
synthesized to investigate potential effects of  nano-
encapsulated catechin on neuronal survival and 
morphological aberrations in primary rat hippocampal 
neurons. Catechin was loaded on silica nanoparticles in 

Fig. 1. Formulas of curcumin, resveratrol, catechin, and epigallocatechin-3-gallate.
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Resveratrol
Resveratrol, known as 3,5,4'-trihydroxystilbene, is 
a polyphenolic phytoalexin (Fig. 1) that has been exten-
sively studied recently due to its numerous beneficial 
activities. This natural polyphenolic compound is 
present in grapes, mulberries, rhubarb, some peanuts, 
and in several other plants (Galleano et al. 2010; Pecha-
nova et al. 2020). The neuroprotective effects of resve-
ratrol in neurological diseases, such as Alzheimer's 
and Parkinson's diseases, are related to the protection 
of  neurons against oxidative damage and prevention 
of apoptotic neuronal death. Despite significant advan-
tages, the effective use of resveratrol is limited due to its 
poor solubility, rapid metabolism, and photosensitivity, 
which severely reduce the bioavailability and bioactivity 
of resveratrol. Recently discovered nanotechnology 
appears to be a good strategy for overcoming the phar-
macokinetic and absorption properties of resveratrol 
(Santos et al. 2019; Summerlin et al. 2015).

Resveratrol-loaded nanoparticle
To improve the solubility, stability, and cellular uptake 
of resveratrol Jeon et al. (2016) used nano-encapsulation 
with chitosan (CS) and γ-poly (glutamic acid) (γ-PGA). 
The solubility of resveratrol increases 3.2 and 4.2 times 
before and after lyophilization by this nanoencapsula-
tion, respectively. Compared with non-nano-encap-
sulated resveratrol, the nano-encapsulated resveratrol 
tends to maintain its solubility and antioxidant activity 
during storage. Moreover, CS/γ-PGA nanoencapsu-
lation was able to significantly enhance the transport 
of resveratrol across a Caco-2 cell monolayer (Jeon et al. 
2016).

In a Sprague-Dawley rat model, the resveratrol-
loaded polymer nanoparticles had more desirable 
improvements in resveratrol accumulation within the 
brain. Moreover, resveratrol-loaded polymer nanopar-
ticles were able to inhibit ferroptosis induced by 
erastin in HT22 mouse hippocampal cells, which are 
commonly used in in vitro studies to examine neuronal 
differentiation and neurotoxicity implicated in neuro-
logical diseases. In an intracerebral hemorrhage mouse 
model, resveratrol-loaded polymer nanoparticles were 
a safer and effective treatment for intracerebral hemor-
rhage injury (Mo et al. 2021). Resveratrol-loaded trans-
ferosomes and nano-emulsions were developed and 
labelled with gold nanoparticles (GNPs). Salem et al. 
(2019) demonstrated that resveratrol-loaded transfero-
somes significantly enhanced behavioural acquisition 
and spatial memory function in amnesic rats compared 
with both the nano-emulsion formulation and the pure 
resveratrol. Computed tomography demonstrated the 
accumulation of GNPs in the brains of all treated rats, 
while superior accumulation of GNPs was observed in 
the rats that received the transferosome formulation. 
The histopathology also demonstrated GNP accumu-

lation in the nuclei and cytoplasm in the brain tissues 
of both the transferosome- and nano-emulsion-treated 
groups (Salem et al. 2019).

Resveratrol-loaded nanoparticles showed positive 
effects also against rotenone-induced neurodegenera-
tion in rats. The results showed that resveratrol-loaded 
nanoparticles had comparatively better efficacy than 
the resveratrol treatment in attenuating the rotenone-
induced Parkinson's like behavioural alterations, 
biochemical and histological changes, oxidative stress, 
and mitochondrial dysfunction in rats (Palle & Neerati 
2018).

In the study of Loureiro et al. (2017) it has been 
shown that solid lipid nanoparticles functionalized with 
an antibody, the anti-transferrin receptor monoclonal 
antibody (OX26 mAb), can work as a possible carrier 
to transport resveratrol to the brain. The cellular uptake 
of the OX26 SLNs in human brain-like endothelial cells 
was substantially more efficient than that of normal 
SLNs and SLNs functionalized with an unspecific anti-
body. Thus, the transcytosis ability of different SLNs 
is higher when functionalized with OX-26. In another 
study (Neves et al. 2016) resveratrol-loaded solid lipid 
nanoparticles were functionalized with apolipopro-
tein E which can be recognized by the LDL receptors 
overexpressed on the blood-brain barrier. These nano-
systems appear to be a promising strategy for resve-
ratrol delivery into the brain while protecting it from 
degradation in the blood stream.

Natural polyphenols-loaded 
nanoparticles and cognition
Several natural polyphenolic compounds have been 
reported to have positive role in different cognitive 
processes (Jagla & Pechanova 2015,2020). It has been 
documented that curcumin-loaded PLGA nanoparti-
cles could activate neurogenesis and repair learning and 
memory impairments in an amyloid beta-induced rat 
model of Alzheimer’s disease-like phenotypes (Tiwari 
et  al. 2014). Also, oral administration of curcumin-
loaded PEG-PLA nanoparticles in Tg2576 mice for 
3 months remarkably enhanced memory in the contex-
tual fear conditioning test and working memory in the 
radial arm maze test (Cheng et al. 2013). Moreover, 
EGCG/Acetyl acid nanoparticle treatment increased 
memory and learning process in the Alzheimer's disease 
mice model concomitantly with reduction of  the Aβ 
plaques burden, Aβ42 peptide levels and neuroinflam-
mation (Cano et al. 2019). 

Frozza et al. (2013) tested lipid-core nanoparticles 
in rats exposed to Aβ, comparing the neuroprotective 
effects of resveratrol-loaded NCs with free resveratrol. 
The results demonstrated that resveratrol-loaded NCs 
decreased the harmful effects caused by Aβ, such as, 
memory loss, learning difficulty, but also reduced synap-
tophysin levels, activated astrocytes and microglial cells. 
Free resveratrol improved the adverse effects of Aβ only 
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partially (Frozza et al. 2013). Resveratrol-loaded poly-
sorbate 80 (PS80)-coated poly(lactide) nanoparticles 
(but not bulk) displayed significant neuroprotection 
against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-
induced behavioural and neurochemical changes, and 
social recognition memory (da Rocha et al. 2015). Li 
et al. (2021) prepared a small resveratrol-selenium-
peptide nanocomposite to enable the application 
of  resveratrol for eliminating Aβ aggregate-induced 
neurotoxicity and mitigating gut microbiota disorder 
in aluminium chloride (AlCl3) and d-galactose(d-gal)-
induced Alzheimer's disease model mice. Oral adminis-
tration of TGN-resveratrol@SeNPs improves cognitive 
disorder through interacting with Aβ and decreasing 
Aβ aggregation, effectively inhibiting Aβ deposition in 
the hippocampus, decreasing reactive oxygen species 
and increasing activity of antioxidation enzymes, and 
down-regulating Aβ-induced neuroinflammation via 
the nuclear factor kappa B/mitogen-activated protein 
kinase/Akt signal pathway.

Conclusion
The results presented in this review demonstrate that 
besides cell protection in the brain, polyphenol-loaded 
polyphenols may have serious potential in the preven-
tion and treatment of cognitive disorders. The use 
of natural polyphenol-loaded nanoparticles also opens 
the question of possible experimental studies of the 
effects of polyphenols upon the selected mental opera-
tions like focussing the attention, support of memory 
mechanisms and several individual habits as e.g., 
professional skills. 
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