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Abstract OBJECTIVES: Classical and Bayesian GLM are the most common method to analyze Func-
tional magnetic resonance imaging (fMRI) data in the study of human brain function. 
However, classical GLM and Bayesian model perform different approaches in handling 
spatial correlation of the fMRI data as well as estimation of the parameters. Consequently, 
they produce different results depending on the size of activation and variation in the data. 
In addition, the choice of prior in Bayesian analysis affect the statistical outcome. In this 
study we apply the classical GLM and Bayesian model with different priors to the fMRI 
dataset and compare their outcomes.
METHODS: This is a block design study in which 5 identical tasks were administrated based 
on pseudo-random order. In this single subject study, Classical and Bayesian GLM were 
applied to the fMRI data to test the visual stimulation and face perception. For Bayesian 
approach, UGL and LORETA prior were considered for parameters, and outcomes 
of Bayesian and classical GLM were compared.
RESULTS: In case of visual stimulation, despite the presence of some significant voxels in the 
GLM analysis, none of the voxels survive Bayesian analysis using either UGL or LORETA 
prior. For testing face perception, there are less significant voxels In GLM analysis than 
in Bayesian with LORETA prior; also, no significant activation was found using Bayesian 
analysis with the UGL prior.
CONCLUSION: Although the classical GLM is the most common method for analyzing 
fMRI data, in the case of small activation with large variation, the results should be inter-
preted with caution. Bayesian analysis can be done in parallel to have a clearer view of the 
outcomes. 
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Introduction
Functional magnetic resonance imaging (fMRI) is 
the most common method to study human brain 
function. In a typical task-related fMRI experi-
ment, a  subject performs a series of activities while 
the entire brain is scanned to obtain a time series 
of BOLD responses for each voxel of the brain. The 
temporal and spatial correlation among the voxels 
is an important feature of fMRI data (Poldrack et al. 
2011). 

To construct a model that can properly include 
spatial and temporal correlation structures, a  range 
of  classical and Bayesian methods have been 
proposed. The massive univariate technique known as 
the general linear model (GLM) is the classical statis-
tical model for fMRI data (Friston et al. 1994). GLM 
models the association between each task or stimulus 
and the time series of BOLD responses at each voxel. 
For each voxel, T or F statistics are used to evaluate 
the hypothesis of task-related activation in that voxel. 
Also, Restricted Maximum Likelihood (ReML) was 
applied to show the significant voxels through the 
statistical parametric map (SPM). The area of task-
related activation is determined by SPM thresholds at 
the specified significant level (Lazar 2008). 

In classical GLM framework, the spatial nature 
of  the BOLD response is taken into account by 
smoothing data as a part of preprocessing steps. 

In the Bayesian framework, first a GLM model 
is considered for fMRI data on voxel level and then 
the spatial priors is defined for model coefficients. 
Variational Bayes is used to estimate parameters 
in a Bayesian GLM, and the posterior probability 
map (PPM) is used to represent the marginal prob-
ability of activation for a  certain stimulus in each 
voxel(Lindquist 2008; Zhang et al. 2015).

Since classical GLM and Bayesian model perform 
different approach in handling spatial correlation 
of the fMRI data as well as estimation of the param-
eters, they produce different results depending on the 
size of activation and variation in the data.

In addition, the choice of prior in Bayesian anal-
ysis affect the statistical outcome.

In the present work we apply the classical GLM 
and Bayesian model with different priors to the fMRI 
dataset and compare their outcomes.

Materials and methods
Subjects
The experiment consisted of 16 volunteers from both 
sexes. All subjects were right-handed without any 
neurological or psychiatric conditions. 

The brain image of subject 2 was selected for the 
present study. The data was obtained from the Open-
fMRI database (https://doi.org/10.18112/openneuro.
ds003548.v1.0.0). Its accession number is ds003548. 

Study design
Psychological block-based task was implemented as 
shown in figure 1. There was 5 fMRI sequences and 
during each run, 5 identical tasks were administrated 
based on pseudo-random order. A total of six 30-s block 
classes were applied including happy faces, sad faces, 
angry faces, neutral faces, pseudo (scrambled) faces 
and low-stimulation. Each block shown for 30 seconds 
consisting of 10 images of the particular class and each 
block occurred twice per sequence. The data related 
to the first sequence was used for the present study.

Functional Magnetic Resonance Imaging
Scanning was conducted on a 3-Tesla General Electric 
Discovery MR750 scanner at the MR Unit at UNAM’s 
Institute of Neurobiology. Echo-planar imaging (EPI) 
blood-oxygen level-dependent (BOLD) sequences 
for fMRI were acquired in 35 axial slices (TR=2000 
ms, TE=30 ms, flip angle=π/2, filed of view [FOV] 
=64×64, voxel size=(3mm)3). Five sequence were 
acquired each consisted of 185 volumes. High-resolu-
tion T1-weighted anatomic image was also acquired 
(TR=8.18 ms, TE=3.19 ms, flip angle=3π/45, filed 
of  view[FOV]=256×256, voxel size=(1mm)3) (David 
& Barrios 2021). The first functional run of second 
subject was selected for the analysis.

Data processing and statistical analysis
The data were preprocessed with regard to the pipe-
line in SPM manual (SPM manual) using the SPM12 
software package (http://www.fil.ion.ucl.ac.uk/spm/
software/ spm12/). Preprocessing includes motion 
realignment, segmentation, co-registration, and 
normalization. For classical GLM analysis, spatial 
smoothing was performed as the last step of prepro-
cessing step. canonical hemodynamic response func-
tion was convolved with boxcar function for each time 
series to obtain the design matrix (Ashburner et al. 
2014).

Statistical analysis
GLM model
Let T be the number of time points in the fMRI time 
series and V be the number of voxels in the brain V=1, 
2…, v. The voxel-wise general linear model is presented 
as

Yv=Xvβv + ev

Here, Yv is T×1 response vector of time series data for 
voxel v, Xv is the T×P design matrix where P is the 
number of task under investigation. 
βv = (βv,1, . . . , βv, p) T is a p×1 vector of regression coef-
ficients and ev is a T × 1 error vector.

Temporal modeling
Temporal modeling is applied through the autoregres-
sive structure of order q (AR (q)) on ev 
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Where wv = (wv,1, . . . , wv,q)T is a q×1 vector of AR coef-
ficients and zv,t is a white noise. Classical GLM assumes 
the same error correlation structure at each voxel within 
each session. In Bayesian GLM, Voxel-wise AR models 
are fitted separately for each session of data. AR model 
order of 1 and 3 is used in this study for classical and 
Bayesian GLM, respectively.

Spatial modeling
For considering spatial dependencies between voxels 
in classical GLM analysis, spatial smoothing is imple-
mented using Gaussian kernel size with full-width 
at half maximum (FWHM) of the Gaussian smoothing 
kernel. Smoothing kernel width of size 8 mm was 
applied in this study.

In Bayesian framework, spatial dependencies 
between voxels is entered to the model by imposing 
spatial priors on model parameters.

Where D is a fixed spatial precision matrix and α is 
the hyper-parameter to be estimated from the data. 

There are several choice for prior on D, but this 
study considers Unweighted Graph-Laplacian (UGL) 
and Low resolution Tomography Prior (LORETA) to be 
applied for each P = 0, …, p, where P is the number 
input stimuli(Pascual-Marqui et al. 1994).

UGL spatial prior constrains the regression coeffi-
cients at a given voxel to be similar to those at nearby 
voxels. LORETA prior is equivalent to UGL squared. 

Computation
Restricted Maximum Likelihood (ReML) was applied 
to classical GLM to estimate the parameters. The T 
statistic is obtained by dividing a contrast of the ensuing 
parameter estimates by the standard error of that 
contrast. The statistical parametric map (SPM) then 
displays the significant voxels.

 In the case of Bayesian GLM, the Variational Bayes 
was applied to the model to estimate the posterior prob-
ability of activations. An image of these posterior prob-
abilities constitutes a posterior probability map (PPM)
(Friston & Penny 2003; Friston et al. 2002a, 2002b).

Results
Classical GLM and Bayesian GLM were fitted to the 
fMRI data to test the visual stimulation and face percep-
tion, and the results were shown by SPM and PPM, 
respectively, as shown in figure 2 – 4. 

In the case of visual stimulation, the contrast was 
defined as blank versus average of scrambled, happy, 
sad, angry and neutral. Also, face perception was tested 
by comparing scrambled with average of neutral, happy, 
sad and angry. 

However, the significant voxel outcomes were 
different for classical GLM and Bayesian analysis. 
Figure 2 shows the result of GLM analysis comparing 
the visual stimulation vs blank. Despite the presence 
of  some significant voxels in the GLM analysis, none 

Fig. 1. Block -paradigm 
design to study 
visual stimulation 
and face perception
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of the voxels survive Bayesian analysis using either UGL 
or LORETA prior. Figure 3 displays the result of classical 
GLM with Bonferroni correction for testing face percep-
tion, and figure 4 shows the result of a Bayesian analysis 
using LORETA prior. In GLM analysis, there are less 
significant voxels than in Bayesian with LORETA prior, 
as shown in the figure. Again, no significant activation 
was found using Bayesian analysis with the UGL prior.

Discussion
In this study, the standard GLM with Bonferroni 
correction and the Bayesian GLM with two most 
commonly used prior was fitted to the fMRI data. The 
Bayesian technique indicated more meaningful activa-
tion than the traditional GLM. The activation is tested 
in classical analysis using hypothesis testing, and any 
non-zero activation can be significant (Lazar 2008). 

The default Bayesian threshold, on the other hand, 
takes into account background noise and hence reports 
an activation as active if it is higher than the level 
of activation that is generic to the brain as a whole. As 
a result, tiny effects with low variation will pass the 
classical threshold but not the Bayesian, as seen in this 
study.

Conversely, when there is a large effect and large 
variation, the activation may pass the Bayesian but 
not the classical threshold. Furthermore, the nature 
of inference differs between the classical and Bayesian 
methods (Friston & Penny 2003; Friston et al. 2006).

In this study we used the Bonferroni method for 
addressing the multiple correction in classical GLM. 
Bonferroni method assumes that the tests are inde-

pendent and consequently becomes conservative when 
there is strong correlation between tests, as there is 
with fMRI data (Poldrack et al. 2011). 

Random Field Theory (RFT), which accounts for 
spatial interdependence between voxels, is another 
common approach to controlling the family-wise 
error rate (FWER) (Hayasaka & Nichols 2004; Worsley 
et al. 2004). Another method for addressing the 
multiple comparison problem in classical GLM is False 
Discovery Rate (FDR) (Genovese et al. 2002). The FDR 
is equal to the FWER if all of the null ,hypotheses are 
true (Lindquist 2008). FDR takes into consideration 
the spatial relationships between voxels and generates 
results that are more comparable to Bayesian analysis 
(Poldrack et al. 2011). 

For Bayesian method, we must choose a prior for 
parameters and estimate the posterior probability 
of each parameter accordingly. The UGL and LORETA 
were the most common prior distributions for param-
eters in Bayesian analysis. The result of method based 
on LORETA prior indicate more significant activation 
than the results based on UGL prior. It can be associ-
ated with higher information that LORETA gains from 
the neighboring voxels. The LORETA prior is equiva-
lent to UGL squared and consequently uses more 
information from the neighboring voxels(Ashburner 
et al. 2014). Other priors for regression parameters 
include Gaussian Markov Random Field (GMRF) 
(Woolrich et al. 2004) and uninformative prior (Penny 
et al. 2003). Uninformative prior is a flat prior in which 
no previous information is employed, and GMRF 
is equivalent to  a  normalized UGL (Ashburner et al. 
2014). 

Fig. 2. SPM showing 
the result of GLM 
analysis for testing 
visual stimulation 
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The outcome of Bayesian analysis depends on the acti-
vation threshold chosen. In this study, we set threshold 
that correspond to finding the activation greater than 
1% of the activation in the whole brain mean signal. 
This threshold was chosen based of the study on visual 
data in the SPM manual (Ashburner et al. 2014). 

In the Bayesian approach, Variational Bayes tech-
nique approximates the posterior density by factorizing 
the posterior distribution across model parameters, 

which is a less computationally expensive alternative 
to Markov Chain Monte Carlo algorithm (MCMC) and 
yields the posterior estimate in a shorter amount of time 
(Penny et al. 2003; Penny et al. 2005; Penny & Trujillo-
Barreto 2005). Alternative methods for variational Bayes 
include spatial variational Bayes and integrated nested 
Laplace approximations (INLA) (Naseri et al. 2021; 
Sidén et al. 2017). 

Fig. 3. SPM showing 
the result of classical 
GLM for testing face 
perception

Fig. 4. PPM showing 
the result of a 
Bayesian analysis 
using LORETA prior 
for testing face 
perception
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We performed single subject analysis in this study; 
the results of group analysis for these data sets are 
reported in the paper by David et al. and the GLM 
results are compared to SVM results (David & Barrios 
2021). A simulation study is recommended to compare 
the outcomes of Classical and Bayesian GLM under 
different scenarios in terms of variation of fMRI data 
relative to the size of parameter of interest.

Conclusions
Although the classical GLM is the most common 
method for analyzing fMRI data, in the case of small 
activation with large variation, the results should be 
interpreted with caution. Bayesian analysis can be done 
in parallel to have a clearer view of the outcomes.
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